发布网友 发布时间:2024-12-09 02:57
共1个回答
热心网友 时间:2024-12-09 03:17
(Ⅰ)由已知得a2=a1+2=2,a3=a2+4=6,a4=a3+6=12.
(Ⅱ)由已知得an+1-an=2n.所以an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2(n?1)+2(n?2)+…+2=(2+2(n?1))?n2=n2?n,
(Ⅲ)∵an=n2-n,
∴bn=(ann+1)?2n=n?2n,
∴数列{bn}前n项和Sn=1×2+2×22+3×23+…+n×2n,①
2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1,②
①-②得-Sn=2+22+23+…2n-n×2n+1
∴?Sn=2?2n+11?2?n×2n+1,
∴Sn=2+(n-1)?2n+1.