发布网友 发布时间:2022-04-21 09:51
共2个回答
热心网友 时间:2023-06-28 23:35
深度学习GPU服务器是科学计算服务器的一种,科学计算服务器主要用于科学研究,是高性能计算机的一种,介于一般服务器与超级计算机之间。目前,科学计算服务器大约占整个服务器市场的5%左右,风虎云龙是目前所知国内专注于科学计算高性能服务器的厂商品牌,多年来一直紧跟科学发展,密切关注人工智能、机器学习、深度学习发展,结合科研发展需要研发生产高性能科学计算服务器,提供专业的售前、售中和售后服务,以及高性能计算集群的安装、调试、优化、培训、维护等技术支持和服务。
上海风虎信息作为深度学习服务器的专业厂商,专注为科研院所和高校师生打造高性能服务器,建议您选择深度学习服务器时需要注意以下几点:
1.深度学习需要大量的并行计算资源,而且动辄计算几天甚至数周,而英伟达NVIDIA、英特尔Intel、AMD显卡(GPU)恰好适合这种工作,提供几十上百倍的加速,性能强劲的GPU能在几个小时内完成原本CPU需要数月完成的任务,所以目前深度学习乃至于机器学习领域已经全面转向GPU架构,使用GPU完成训练任务。
2.如今即使使用GPU的深度学习服务器也要持续数天乃至数月(取决于数据规模和深度学习网络模型),需要使用单独的设备保障,保证训练任务能够小时长期稳定运行。
3.的深度学习工作站(服务器)可以方便实现实验室计算资源共享,多用户可以在个人电脑编写程序,远程访问到深度学习服务器上排队使用计算资源,减少购买设备的开支并且避免了在本地计算机配置复杂的软件环境。
上海风虎信息专注于深度学习GPU服务器开发,根据TensorFlow,Pytorch,Caffe,Keras,Theano等软件计算特征,向您推荐入门级、中级、顶级GPU服务器典型配置,欢迎查阅,谢谢。
拥有高性能计算领域优秀的专业工程师团队,具有 10 年以上高性能计算 行业技术支持经验,提供专业的售前、售中和售后服务,以及高性能计算集群的安装、调 试、优化、培训、维护等技术支持和服务。在深度学习、量化计算、分子动力学、生物信 息学、雷达信号处理、地震数据处理、光学自适应、转码解码、医学成像、图像处理、密 码破解、数值分析、计算流体力学、计算机辅助设计等多个科研领域积累了深厚的技术功 底,和熟练的技术支持能力。提供 Caffe, TensorFlow, Abinit, Amber, Gromacs, Lammps, NAMD, VMD, Materials Studio, Wien2K, Gaussian, Vasp, CFX, OpenFOAM, Abaqus, Ansys, LS-DYNA, Maple, Matlab, Blast, FFTW, Nastran 等软件的安装、调 试、优化、培训、维护等技术支持和服务。
热心网友 时间:2023-06-28 23:36
GPU服务器厂商市面上还是挺多的,不管是大厂还是代理商都太多太多了,说到比较知名估计很多人的第一印象就是英伟达了吧。像国内也有很多英伟达的代理商,思腾合力就是其中之一,而且还是英伟达精英级的合作伙伴,还挺不错的。