发布网友 发布时间:2022-04-23 12:36
共2个回答
热心网友 时间:2022-07-16 20:24
一、定义
在微观领域中,某些物理量的变化是以最小的单位跳跃式进行的,而不是连续的,这个最小的单位叫做量子。
量子:震动的微粒子的解说——量子论
量子一词来自拉丁语quantus,意为“多少”,代表“相当数量的某事”。在物理学中常用到量子的概念,量子是一个不可分割的基本个体。例如,一个“光的量子”是光的单位。而量子力学、量子光学等等更成为不同的专业研究领域。
其基本概念是所有的有形性质也许是"可量子化的"。"量子化" 指其物理量的数值会是一些特定的数值,而不是任意值。例如,
在(休息状态)的原子中,电子的能量是可量子化的。这能决定原子的稳定和一般问题。
在20世纪的前半期,出现了新的概念。许多物理学家将量子力学视为了解和描述自然的的基本理论。
[编辑本段]
二、历史
量子物理是根据量子化的物理分支,在1900年以理论来建立。由于马克斯•普朗克(M. Planck)释所谓的黑体辐射。他的工作根本上合并了量子化用同样方式,到了今天它仍被使用。但他严重地冲击了古典物理学,需要了另外30年的研究,就是在量子论未确立之前。直到现在一些主张仍然不能被充分地了解。这里有很多需要学习的地方。包括科学的本质是怎么出现。
不光是普朗克对这个新概念感到困扰。当时德国物理社会中黑体研究成为焦点。在10月、11月和12月会议前夕,对他的科学同事报告公开他的新想法。就这样谨慎的实验学家(包括F. Paschen,O.R. Lummer,E. Pringsheim,H.L. Rubens,和F. Kurlbaum)和一位理论家迎接最巨大的科学*。
[编辑本段]
三、黑体辐射量子方程
当物体被加热,它以电磁波的形式散发红外线辐射。这是了解清楚和明白最明显的重要性。当物体变得炽热,红色波长部分开始变得可见。但是大多数热辐射仍然是红外线,除非直到物体变得像太阳的表面一样热。这是当时的实验室内不能够达成的而且只可以量度部分黑体光谱。
黑体辐射量子方程是量子力学的第一部分。在1900年10月7日面世。
能量 E、辐射频率 f 及温度 T 可以被写成:
E=hf/(e^(hf/κT)-1)
h 是普朗克常数及 k 是玻尔兹曼常数。两者都是物理学中的基础。基础能量的量子是 hf。可是这个单位正常之下不存在并不需要量子化。
[编辑本段]
四、量子力学的诞生
从实验中普郎克推算到h 及 k的数值。因此他在1900年12月14日的德国物理学学会会议中第一次发表能量量子化数值、 Avogadro-Loschmidt数的数值、一个份子模(mole)的数值及电荷单位。这数值比以前更准确。这代表量子力学的诞生。
[编辑本段]
五、量子力学诠释:霍金膜上的四维量子论
类似10维或11维的“弦论”=振动的弦、震荡中的象弦一样的微小物体。
霍金膜上四维世界的量子理论的近代诠释(邓宇等,80年代):
振动的量子(波动的量子=量子鬼波)=平动微粒子的振动;振动的微粒子;震荡中的象量子(粒子)一样的微小物体。
波动量子=量子的波动=微粒子的平动+振动
=平动+振动
=矢量和
量子鬼波的DENG'S诠释:微粒子(量子)平动与振动的矢量和
粒子波、量子波=粒子的震荡(平动粒子的震动)
[编辑本段]
六、“波”和“粒子”统一的数学关系
振动粒子的量子论诠释
物质的粒子性由能量 E 和动量 p 刻划,波的特征则由电磁波频率 ν 和其波长 λ 表达,这两组物理量的比例因子由普朗克常数 h(h=6.626*10^-34J•s) 所联系。
E=hv , E=mc^2 联立两式,得:m=hv/c^2(这是光子的相对论质量,由于光子无法静止,因此光子无静质量)而p=mc
则p=hv/c(p 为动量)
粒子波的一维平面波的偏微分波动方程,其一般形式为
∂ξ/∂x=(1/u)(∂ξ/∂t) 5
三维空间中传播的平面粒子波的经典波动方程为
∂ξ/∂x+∂ξ/∂y+∂ξ/∂z=(1/u)(∂ξ/∂t) 6
波动方程实际是经典粒子物理和波动物理的统一体,是运动学与波动学的统一.波动学是运动学的一部分,是运动学的延伸,即平动与振动的矢量和.对象不同,一个是连续介质,一个是定域的粒子,都可以具有波动性.(邓宇等,80年代)
经典波动方程1,1'式或4--6式中的u,隐含着不连续的量子关系E=hυ和德布罗意关系λ=h/p,由于u=υλ,故可在u=υλ的右边乘以含普朗克常数h的因子(h/h),就得到
u=(υh)(λ/h)
=E/p
等关系u=E/p,使经典物理与量子物理,连续与不连续(定域)之间产生了联系,得到统一.
2.粒子的波动与德布罗意物质波的统一
德布罗意关系λ=h/p,和量子关系E=hv(及薛定谔方程)这两个关系式实际表示的是波性与粒子性的统一关系, 而不是粒性与波性的两分.德布罗意物质波是粒波一体的真物质粒子,光子,电子等的波动.
[编辑本段]
七、参考书籍
■M. Planck,A Survey of Physical Theory,transl. by R. Jones and D.H. Williams,Methuen & Co.,Ltd.,London 1925 (Dover editions 1960 and 1993) including the Nobel lecture.
■J. Mehra and H. Rechenberg,The Historical Development of Quantum Theory,Vol.1,Part 1,Springer-Verlag New York Inc.,New York 1982.
■Lucretius,"On the Nature of the Universe",transl. from the Latin by R.E. Latham,Penguin Books Ltd.,Harmondsworth 1951. There are,of course,many translations,and the translation's title varies. Some put emphasis on how things work,others on what things are found in nature.
[编辑本段]
八、参看
量子力学
量子光学
量子信息
量子状态
量子数
量子场论
量子计算机
量子密码学
量子演算
磁束量子
量子化
次原子粒子
基本粒子
量子引力论
扩展阅读:
1.M. Planck,A Survey of Physical Theory,transl. by R. Jones and D.H. Williams,Methuen & Co.,Ltd.,London 1925 (Dover editions 1960 and 1993) including the Nobel lecture.
2.J. Mehra and H. Rechenberg,The Historical Development of Quantum Theory,Vol.1,Part 1,Springer-Verlag New York Inc.,New York 1982.
3.Lucretius,"On the Nature of the Universe",transl. from the Latin by R.E. Latham,Penguin Books Ltd.,Harmondsworth 1951. There are,of course,many translations,and the translation's title varies. Some put emphasis on how things work,others on what things are found in nature.
4.physics
量子态*传输
目录[隐藏]
量子态*传输
中国实现世界上最远距离的量子态*传输
多粒子量子纠缠态*传输与三旋理论
证实穿越大气层可行
[编辑本段]
量子态*传输
量子态*传输是一种全新通信方式,它传输的不再是经典信息而是量子态携带的量子信息,是未来量子通信网络的核心要素。利用量子纠缠技术,需要传输的量子态如同科幻小说中描绘的“超时空穿越”,在一个地方神秘消失,不需要任何载体的携带,又在另一个地方瞬间神秘出现。
[编辑本段]
中国实现世界上最远距离的量子态*传输
中国实现世界上最远距离的量子态*传输 (2010年06月04日 08:53 来源:光明日报)
量子态*传输穿越大气层证实为全球化量子通信网络奠定基础。
由中国科大和清华大学组成的联合小组成功实现了世界上最远距离的量子态*传输,16公里的传输距离比原世界纪录提高了20多倍。实验结果首次证实了在自由空间进行远距离量子态*传输的可行性,为全球化量子通信网络最终实现奠定了重要基础。
据联合小组研究成员彭承志教授介绍,量子态*传输是一种全新通信方式,它传输的不再是经典信息而是量子态携带的量子信息,是未来量子通信网络的核心要素。利用量子纠缠技术,需要传输的量子态如同科幻小说中描绘的“超时空穿越”,在一个地方神秘消失,不需要任何载体的携带,又在另一个地方瞬间神秘出现。这一奇特的现象引起了学术界广泛兴趣。1997年,奥地利蔡林格小组在室内首次完成了量子态*传输的原理性实验验证。2004年,这个小组利用多瑙河底的光纤信道,成功地将量子态*传输距离提高到600米。但由于光纤信道中的损耗和环境的干扰,量子态*传输的距离难以大幅度提高。
2004年,中国科大潘建伟、彭承志等研究人员开始探索在自由空间实现更远距离的量子通信。在自由空间,环境对光量子态的干扰效应极小,而光子一旦穿透大气层进入外层空间,其损耗更是接近于零,这使得自由空间信道比光纤信道在远距离传输方面更具优势。这个小组2005年在合肥创造了13公里的自由空间双向量子纠缠分发世界纪录,同时验证了在外层空间与地球之间分发纠缠光子的可行性。2007年开始,中国科大——清华大*合小组在北京八达岭与河北怀来之间架设长达16公里的自由空间量子信道,并取得了一系列关键技术突破,最终在2009年成功实现了世界上最远距离的量子态*传输,证实了量子态*传输穿越大气层的可行性。
联合小组在自由空间量子通信领域的一系列工作,得到了科技部重大科学研究计划、中科院知识创新工程重大项目和国家自然科学基金项目等支持,并引起了国际学术界的广泛关注,6月1日出版的英国《自然》杂志子刊《自然•光子学》以封面论文形式发表了这一研究成果。英国的《新科学家》、美国的《今日物理》、美国物理学会新闻网站均及时报道了这个研究成果。
[编辑本段]
多粒子量子纠缠态*传输与三旋理论
王德奎(绵阳日报社,四川绵阳,621000 )
摘要:环量子的三种自旋编码和对DNA双螺旋结构的孤立波模拟,奠定了量子信息学及其量子计算机新的理论基础;而原子间量子态及多粒子纠缠态*传输的探索,会更多拓展三旋理论的这一基础。
关键词:量子计算机、量子信息学、量子纠缠、*传输、三旋理论
一、潘建伟教授的多粒子态*传输
量子信息学告诉人们:量子态是指原子、中子、质子等粒子的状态,它可表征粒子的能量、旋转、运动、磁场以及其他的物理特性。1993年,美国物理学家贝尼特等人提出了“量子态*传输”的方案,即位将原粒子物理特性的信息发向远处的另一个粒子,该粒子在接收到这些信息后,会成为原粒子的复制品。而在此过程中,传输的是原粒子的量子态,而不是原粒子本身。传输结束后,原粒子已经不具备原来的量子态,而有了新的量子态。因为制造量子计算机需要量子态的*传输,因此,实现原子间量子态*传输是奠定研制量子计算机的基础之一。2004年6月,美国和奥地利的物理学家在没有任何物理连接的情况下,实现了原子间的量子态*传输。与此同时,我国潘建伟教授等科学家已实现了五粒子纠缠态以及终端开放的量子态*传输,他们的实验方法在量子计算和网络化的量子通信中也有重要的应用。
美国国家标准与技术研究所的科学家是利用激光技术,对三个带有正电荷的铍原子的量子态进行操作。首先,他们利用量子纠缠技术使其中两个原子的量子态完全一致。接着,他们准确地测量了这两个原子的量子态,然后通过激光将它们的量子态复制到8微米外的另一个原子上。整个过程由计算机控制,仅耗时4毫秒,传输成功率达到78%。而另一个研究小组的奥地利因斯布鲁克大学的科学家则采用钙原子,同样实现了量子态*传输,成功率为75%。其基本原理也是利用第三个原子为辅助,用激光将一个原子的量子态传递给另一个原子。但两项实验在具体方法上有所不同,奥地利小组使两个原子距离相对较远,以便用激光单独地改变一个原子的状态;美国小组则将原子冷却以保持操作的可靠性。
为了进行远距离的量子密码通信或量子态*传输,事先需要让距离遥远的两地共同拥有最大的“量子纠缠态”。所谓“量子纠缠”是指不论两个粒子间距离多远,一个粒子的变化都会影响另一个粒子的现象,即两个粒子之间不论相距多远,从根本上讲它们还是相互联系的。这是一种“神奇的力量”,可成为具有超级计算能力的量子计算机和“万无一失”的量子保密系统的基础。但由于在量子通信通道中存在种种不可避免的环境噪声,“量子纠缠态”的品质会随着传送距离的增加而逐渐降低,也就是说,两个粒子之间的纠缠会因传播距离的增大而不断退化,其纠缠数量也会随之越来越少。这是导致量子通信手段目前只能停留在短距离应用上的根本原因。
量子计算机处理量子信息的基本信息单位是量子比特,但现有技术还不能使量子比特快速移动。美国国家标准与技术研究所的原子间量子态*传输技术,可以提升量子比特的移动速度,加快逻辑运算的速度。这以前科学家曾经成功地对光子进行量子态*传输,而光子主要用于量子通信,原子在量子计算中更有潜力。但多粒子纠缠态的制备与操纵,是近年来国际上蓬勃发展的量子物理与量子信息研究领域长盛不衰的研究热点。此前,三粒子和四粒子之间的量子纠缠已在实验上得到了实现,并被用来证明量子力学的非定域性,即一种被爱因斯坦称为“遥远地点间幽灵般的相互作用”。但是,在现实世界中,如何把量子纠缠应用到量子计算和量子通信中还面临着巨大挑战。为确保量子计算的可靠性,就必须掌握量子纠错这一最关键的技术。但要实现普遍适用的量子纠错,仅仅靠三粒子和四粒子之间的纠缠已无法满足需要,须得同时把五个粒子纠缠起来,并加以相干控制才行。这在技术上难度极大,因此五粒子纠缠态的制备与操纵一直是国际上长期以来公认的高难课题。潘建伟教授等科学家利用五光子纠缠源,在实验上还演示了一种新的“终端开放”的量子态*传输,即在不确定选择某个粒子作为量子态输出终端的情况下,先将一个粒子的量子态*传输到另外多个纠缠着的粒子上,尽管这些粒子分别在相距遥远的不同地点,但只要通过适当操作,仍可将输入的量子态在任意选定的一个粒子上读出。这种新颖的量子*传输态正是量子纠错和分布式量子信息处理中必须掌握的一项关键技术。这一研究成果被称之为远距离量子通信开辟了研究的新方向。
二、与爱因斯坦纠缠的量子力学非定域性
潘建伟1970年3月出生在浙江东阳,1987年考入中国科技大学。2003年,潘建伟由于在量子态*传输以及量子纠缠态纯化实验实现上的重要贡献,他被奥地利科学院授予ErichSchmid奖,此奖为奥地利科学院授予40岁以下的青年物理学家的最高奖,两年一度,每次一人。在最近的7年时间里,潘建伟做出5个首次:首次成功地实现了量子态*传送以及纠缠态交换;首次成功实现三光子、四光子纠缠态,并利用多粒子纠缠态首次成功地实现了GHZ定理的实验验证;首次成功地实现了自由量子态的*传送;首次实现纠缠态纯化以及量子中继器的成功实验;首次取得五粒子纠缠态的制备与操纵。粒子中出现的“纠缠”现象,被爱因斯坦称之为“遥远地点间幽灵般的相互作用”,潘建伟教授和爱因斯坦的这一未解之谜“纠缠”,还须提到我国对粒子“纠缠”的这一有关的三旋理论科学研究。
南京大学博士生导师沈骊天教授说,三旋是决定物性的内禀运动,三旋理论不仅仅是在阐释西方学者所主张的超弦理论,它在一定程度上还超越了西方弦理论家的视野,显示出其独特的创新思维——它将闭合的弦(弦圈、环量子)称为类圈体(《三旋理论初探》4页)。一维的弦圈,除了超弦理论所说的各种外在运动;还应有三旋理论所说的体旋——绕圈面内轴线的旋转,面旋——绕垂直于圈面的圈中心轴线的旋转,线旋——绕圈体内环状中心线的旋转(《三旋理论初探》5-6页、32页、105~107页、356页)这三种“内禀”运动。弦圈的“外在运动”决定物理学所观察的粒子的“运动特性”,弦圈的“内禀运动”(三旋运动)则决定粒子的“物性”,或者说,集中地表现在“圈态密码”观念的提出:三旋理论指出三旋的体旋有二种状态(正、反),面旋有二种状态(正、反),线旋中的平凡线旋有二种状态(正、反),线旋中的非平凡线旋有四种状态(左斜:正、反,右斜;正、反);按单动(只做一种旋动)、双动(同时做两种旋动)、三动(同时做三种旋动)可以有62种不同的三旋状态组合(《三旋理论初探》11页、323页、392页)。而基本粒子的不同种类(基本粒子连同赫格斯粒子在内也恰恰有62种)及其各自的性质,则都由不同的三旋状态组合决定;它们还分别对应于一定的流形的固有拓扑性质(《三旋理论初探》35~47页)。三旋理论将表示各种基本粒子的“三旋状态组合”称为“圈态密码”(圈态指弦圈的三旋状态)。圈态密码以弦圈的三旋状态组合表示基本粒字子,较之人类对物质的认识史上的化学以分子式表示物质结构,原子物理学以质子、中子、电子的组合表示上百种原子,夸克理论以夸克组合表示数百种强子,堪称又一座崭新的里程碑;破译“圈态密码”不仅意味着找到形成各种粒子的圈态;而且还应当意味着建立起三旋状态和现有物理学所认识的各种基本粒子属性的联系。
其实,有了三旋模型这种隐秩序,反过来对于爱因斯坦、波多尔斯基、罗森发现的量子EPR效应也好理解。
众所周知,潘建伟进行远距离的量子密码通信科普演示:五颗骰子在电脑上滚来滚去,生动地表现了五粒子相互“纠缠”中的情景;但正如爱因斯坦“上帝不会投骰子”之所言,五粒子其实不是五骰子,也绝不是靠投骰子、碰运气,而是来自量子态叠加原理及其应用,其研究工作是和爱因斯坦、波多尔斯基、罗森发现的量子EPR效应有纠缠的,即跟爱因斯坦迷惑一辈子的量子力学非定域性有纠缠。但三旋模型却能为前人所不了解的量子力学非定域性特性提供解答的理论帮助,即量子力学非定域性与三旋的关系,道理类似指南针在地球各地除两极外,都能定向相同指向南方,是因为地球磁场对指南针的作用引起的,因此也说明如航天飞机或人造卫星离开地球,或在受磁性材料干扰的地方,用指南针定向是不适用的;但科学家们却找到了一种陀螺罗盘,不需靠磁力线的作用来定向,而是利用陀螺本身的多层自旋来定向的;这种自旋定向的原理,揭示了自然界中自旋调制耦合功能的EPR效应普遍存在。然而在宏观物体身上是很难做到。非粒子量子圈态线旋客体,因为三旋是它的自然属性。因此是一种天然的超级陀螺罗盘。在EPR实验中之所以曾经耦合过去的光子,在分开以后还会出现整体效应,这正是因为象陀螺罗盘在出发之前经调制一样,耦合过的光子,它们象经过调制的陀螺一样,离开地面的陀螺罗盘的方位测量,是跟它调制配对时的陀螺罗盘的方向测量一致的,因此在EPR测量中,两者的量子效应是一样的。所以说,三旋理论是多粒子量子纠缠态*传输理论入门的基础理论之一。
曾有人把量子缠结看成是超光速,但这不是严格证明。一是,三旋理论证明,任何量子本身就是一个类似超级陀螺仪的三旋陀螺,量子之间进行缠结,类似陀螺仪使用前进行的测量与标准之间作的调整校对,所以陀螺仪使用中间产生的任何测量信息,使用者之间都是明确的,即是“超光速”的。其二,超光速测量不能排除时间克隆。量子概率克隆应用于量子信息提取和量子态识别,是量子*传态的一个主要途径,类似电子传真、电子邮件;基因复制出一个古代的“冰人”,并不等于已经超光速地追上了远古的时间。正是从量子信息学的基础出发,有学者证明能够用3个基本部件构建出通用量子计算机:缠结粒子、量子移物器和每次处理单个量子比特的门。例如从移物器制造两量子比特的方法是采用经仔细修饰的缠结对把两个量子比特从门的输入传送到门的输出,而修饰缠结对的方法恰好是让门的输出接收适当处理的量子比特。这样,对两个未知的量子比特执行量子逻辑的任务就简化为准备预先定义的特殊缠结对并进行传输的任务。显然,使移物成功率达到100%所需的完整贝尔态测量本身就是一种两量子比特的处理过程。由于各个粒子的状态彼此紧密相关,一旦某个粒子的状态因受到测量而确定下来,其它粒子的状态也随之确定。但区区几个量子比特不足以实现任何稍微复杂的运算功能,要制造出实用的量子计算机,就必须掌握大量粒子实现“缠结”状态的技术。
但过去的量子态*传输实验,在确定传输量子态成功的同时,必须以破坏被传输的量子态为代价,这就使其不可能在量子通讯和量子计算中有进一步的应用。潘建伟教授及其同事在研究中发现,适当降低被传输量子态的亮度可在不破坏被传输态的条件下成功传输量子态。这一研究成果,与高精度的纠缠态纯化一起,可从根本上解决目前在远距离量子通讯中由“退相干效应”带来的困难,并将极大地推动可容错量子计算的实验研究。 如今潘建伟开展的一项实验表明,不管两个粒子之间的距离有多远,哪怕其间全是“自由空间”,二者也有根本的互相联系,其中一个粒子状态的变化都会影响到第二个粒子的状态。而且,两个相距遥远的光子即使在没有光纤联结和存在噪声干扰的情况下,也可以纠缠在一起。而在他们开展以上实验之前,两个粒子间的量子纠缠要么发生在相对很短的距离,要么将两个粒子通过光纤联结起来。然而,也许今后能解开爱因斯坦之谜密钥的三旋理论,更会形成超级量子计算机和“万无一失”的密码系统的基础而做出贡献。
三、量子计算机原理与量子信息学基础
目前最快的超级计算机,对一个400位的阿拉伯数字进行因子分解,要耗时上百亿年,而具有相同时钟脉冲速度的量子计算机,只需大约一分钟。因此,人们一旦拥有了一台量子计算机,那么目前的密码系统将毫无保密性可言!潘建伟教授的量子纠缠经典信息处理的最基本单元是比特,即二进制数0或1;而一个按照一定数学规则给出的随机二进制数据串构成一个密钥,经典通信中最难解决的问题是密钥分配问题。如果密钥分配不是绝对保密,经典密码通信也就不可能绝对保密。但潘建伟等科学家最近开展的研究发现,基于量子力学线性叠加原理和不可克隆定理的量子密钥分配,却可以从根本上解决密钥分配这一世界性难题。虽然目前美国马萨诸塞州技术研究所与洛斯阿拉莫斯国家实验室,研制量子计算机运算器已成事实,但由于没有三旋理论的指导,西方量子计算机原理中存在有纰漏。例如Neil Gershenfeld等人阐释量子计算机能同时处于多个状态且能同时作用于它的所有不同状态的量子陀螺原理图时,对量子位不动的几种陀螺旋转,就分辨不清,明显的错误是把陀螺绕Y轴的体旋称为“进动”,这是不确切的。其原因是体旋实际比面旋复杂。而这一点却让量子计算机原理研究的专家所忽视,这类量子计算机原理中的纰漏,与量子计算机以量子态作为信息的载体有关。
因为,人们已提出用光子、电子、原子、离子、量子点、核自旋以及超导体中的库柏对等物理系统作为量子比特的方案,这使量子行为与经典物理的联系更紧密,但它也揭示出经典物理概念天生的不足,从而,非引入三旋概念莫属。即Neil Gershenfeld等人阐释量子计算机能同时处于多个状态且能同时作用于它的所有不同状态的量子陀螺原理图,也类似陀螺或廻转仪,它们的进动和公转,是旋转概念中不好区分的一个问题,把自旋的定义转换成截面的定义来看待三旋,就很明白了。
(1)面旋:用一系列平行的截面来切一个作自旋的物体,如果能在每个截面内找到一个且仅有一个不动的转点的旋转,称为面旋。如果由这些不动点组成的转轴与截面正交,这些截面就称为面旋正面,这条转轴就称为面旋轴,也称面旋Z轴。
(2)体旋:物体作面旋,面旋轴只有一条,而面旋正面却有很多个,并且物体还可以绕其中一个面旋正面内的一条轴作旋转,这称为体旋。而这个面旋正面就称为体旋面,这根转轴称为体旋轴。但过这个面旋正面不动点的体旋轴还可以有许多条,因此在体旋面内选定一条作体旋X轴,那么体旋面内过不动
热心网友 时间:2022-07-16 21:42
量子力学(Quantum Mechanics),它是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是现代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。
量子力学是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础所进行的。
量子力学是非常小的领域——亚原子粒子中的主要物理学理论[1] 。该理论形成于20世纪早期,彻底改变了科学家对物质组成成分的观点。在量子世界,粒子并非是台球,而是嗡嗡跳跃的概率云,它们并不只存在一个位置,也不会从点A通过一条单一路径到达点B[1] 。根据量子理论,粒子的行为常常像波,用于描述粒子行为的“波函数”预测一个粒子可能的特性,诸如它的位置和速度,而非实际的特性[1] 。物理学中有些怪异的想法,诸如纠缠和不确定性原理,就源于量子力学。
但在量子力学中,体系的状态有两种变化,一种是体系的状态按运动方程演进,这是可逆的变化;另一种是测量改变体系状态的不可逆变化。因此,量子力学对决定状态的物理量不能给出确定的预言,只能给出物理量取值的几率。在这个意义上,经典物理学因果律在微观领域失效了。
据悉,一些物理学家和哲学家断言量子力学摈弃因果性,而另一些物理学家和哲学家则认为量子力学因果律反映的是一种新型的因果性——几率因果性。量子力学中代表量子态的波函数是在整个空间定义的,态的任何变化是同时在整个空间实现的。