首页 养生问答 疾病百科 养生资讯 女性养生 男性养生
您的当前位置:首页正文

数学学习方法中学生个人归纳总结 篇17

2024-07-16 来源:华佗健康网

  摘要:课本是考试内容的载体,是高考命题的依据,也是智能的生长点,是最有价值的资料,有相当多的高考试题是课本中基本题目的直接引用或稍作变形得来的,其用意就是引导我们要重视基础,切实抓好“三基”(基础知识、基本技能、基本方法)。最基础的知识是最有用的知识,最基本的方法是最有用的方法。

  关键词:知识,技能,方法

  近年来,数学复习资料名目繁多,许多教师过于依赖各类资料,在复习中忽视了书本中的基础知识。这中做法实际上相当于在复习中失去了基石,现谈谈本人的一些看法。

  一、重视基础知识、基本技能、基本方法

  课本是考试内容的载体,是高考命题的依据,也是智能的生长点,是最有价值的资料,有相当多的高考试题是课本中基本题目的直接引用或稍作变形得来的,其用意就是引导我们要重视基础,切实抓好”三基”(基础知识、基本技能、基本方法)。最基础的知识是最有用的知识,最基本的方法是最有用的方法。在复习过程中,我们必须重视课本,夯实基础,以课本为主,重新全面地梳理知识,方法,注重知识结构的重组与概括,揭示其内在联系与规律,从中提炼出思想方法。在知识的深化过程中,切忌孤立对待知识,方法,而应自觉地将其前后联系,纵横比较、综合,自觉地将新知识及时纳入已有的知识系统中去,注意通用通法,淡化特殊技巧。

  近年来高考数学试题的新颖性,灵活性越来越强,不少学生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而忽视了基础知识、基本技能、基本方法的复习。其实近几年的高考命题已经明确告诉我们:基础知识、基本技能、基本方法始终是高考数学考查的重点。选择题、填空题以及解答题中的基本常规题已达到整份试卷的80%左右,对基础知识的要求也更高、更严了。如果我们在复习中过于粗疏,或在学习中对基础知识不求甚解,都会导致在考试中判断错误。其实定理、公式推证的过程就蕴涵着重要的解题方法和规律,如果没有发掘其内在的规律就去做题,试图通过大量地做题去“悟”出某些道理,只会事倍功半。

  二、抓刚务本,落实教材

  数学复习任务重,时间紧,但决不能因此而脱离教材。相反,要紧扣大纲,抓住教材,在总体上把握教材,明确每一章、每一节的知识在整体中的地位、作用。

  近年来的试题都与教材有着密切的联系,有的是直接利用教材中的例题、习题、公式定理的证明作为高考题;有的是将教材中的题目略加修改、变形后作为高考题;还有的是将教材中的题目合理拼凑、组合作为高考题。因此,一定要高度重视教材,针对教材所要求的内容和方法,把主要的精力放在教材的落实上,切忌刻意追求偏题、怪题和技巧过强的难题。

  学生对基础知识和基本技能的理解与掌握是数学教学的基本要求,也是评价学生学习的基本内容。高中数学中的基础知识、基本技能主要包括②,基本的数学概念、数学结论的本质,概念、结论等产生的背景、应用,以及其中所蕴涵的数学思想和方法,和它们在后续学习中的作用。同时,还包括数学发现和创造的一些基本过程。

  高中数学考试的内容选取,要注重对数学本质的理解和思想方法的把握,避免片面强调机械记忆、模仿以及复杂技巧。尤其要把握如下几个要点:

  1、关于学生对数学概念、定理、法则的真正理解。尤其是,对数学的理解,至少包括能否独立举出一定数量的用于说明问题的正例和反例。

  2、关于不同知识之间的联系和知识结构体系。即高中数学考试应关注学生能否建立不同知识之间的联系,把握数学知识的结构、体系。

  3、对数学基本技能的考试,应关注学生能否在理解方法的基础上,针对问题特点进行合理选择,进而熟练运用。同时,注意数学语言具有精确、简约、形式化等特点,适当检测学生能否恰当地运用数学语言及自然语言进行表达与交流。

  三、加强通性通法的总结和运用

  在复习中应淡化特殊技巧的训练,重视数学思想和方法的作用。常用的数学思想方法有:

  1、函数思想。中学数学,特别是中学代数,可谓是以函数为中心(纲)。集合的学习,求函数的定义域和值域打下了基础;映射的引入,使函数的核心————对应法则更显现其本质;单调性、奇偶性、周期性的研究,是对映射更深入更细致的刻画;函数与反函数的研究,辨证全面地看待事物之间的制约关系。数列可以看成是特殊的函数。解方程f(x)=0,就是求函数y=f(x)的零点;解不等式f(x)0或f(x)0,就是求函数y=f(x)取正值、负值的区间;函数极限的研究,导数、微分、积分的研究,也完全是以函数为对象,为中心的。一句话,抓住了函数,就牵起中学代数的“牛鼻子”。

  2、数形结合思想。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与树轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。

  数形结合的重点是“以形助数”。运用数形结合思想,不仅易直观发现解题途径,而且能避免复杂的计算与推理。大大简化了解题过程。这在解选择题、填空题中更显其优势,要注意培养这种思想意识,要争取做到“胸中有图,见数想图”,以开拓自己的思维视野。

  3、分类讨论思想。所谓分类讨论,就是当问题所给的对象不能统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的答案。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。

  分类原则:分类的对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。

  分类方法:明确讨论对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合得出结论。

  4、转化思想。将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法变换,化归为在已知知识范围内已经解决或容易解决的问题的思想叫做化归与转化的思想。化归与转化的思想的实质是揭示联系,实现转化。

  熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好中学数学的金钥匙。

  四、帮助学生打好基础,发展能力

  教师应帮助学生理解和掌握数学基础知识、基本技能,发展能力。具体来说:

  1、夯实基础、加强概念教学:历年高考都有40%左右分值比重的试题综合性较弱、难度较低、贴近教材,解答过程较为直观且命题方式相对稳定,用以考查学生基础知识的掌握情况。有40%左右分值比重的试题综合性较强,命题较为灵活,难度相对较高,用以考查学生的基本能力。知识是基础,能力的提高和知识的丰富是相互伴随的过程,要意识到基础知识的重要性,常规教学中一味求难求变的作法是不可取的,抓住基础知识是全面提高教学质量和高考成绩的关键。数学科学建立在一系列概念的基础之上,数学教学由概念开始,概念教学是基础的基础。数学具有高度抽象的特点,概念的形成是教学工作的难点。知识的发生发现过程是概念的形成过程,挖掘并精化知识的发生发现过程,直观展现知识的发生背景和前人的思维过程,是概念教学的关键。数学学习要理解诸多的概念及概念间的关系,概念教学贯穿于数学教学工作的始终。探讨概念间的关系,展示概念间的联系,把诸多概念有机地串接起来,有利于加深学生对概念的理解,有利于“辩证、普遍联系”的认识观念的形成,有利于探寻、解决问题能力的提高和数学思想方法的形成。

  2、强调对基本概念和基本思想的理解和掌握。教学中应强调对基本概念的理解和掌握,对一些核心概念要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。

  3、重视基本技能的训练。熟练掌握一些基本技能,对学好数学是非常重要的。在高中数学课程中,要重视运算、作图、推理、处理数据以及科学计算器的使用等基本技能训练。但应注意避免过于繁杂和技巧性过强的训练。

  随着时代和数学的发展,高中数学的基础知识和基本技能也在发生变化。一些新的知识就需要添加进来,原有的一些基础知识也要用新的理念来组织教学。因此,教师要用新的观点审视基础知识和基本技能,并帮助学生理解和掌握数学基本知识、基本技能和基本思想。对一些核心概念和基本思想(如函数、空间观念、数形结合、向量、导数、统计、随机观念、算法等)要在整个高中数学的教学中螺旋上升,让学生多次接触,不断加深认识和理解。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质,注重体现基本概念的来龙去脉。在新课程中,数学技能的内涵也在发生变化,在教学中要重视运算、作图、推理、数据处理、科学计算器和计算机的使用等基本技能训练,但应注意避免过于繁杂和技巧性过强的训练。

显示全文