首页 养生问答 疾病百科 养生资讯 女性养生 男性养生
您的当前位置:首页正文

小学数学“转化思想”在教学中的应用

2023-10-28 来源:华佗健康网
龙源期刊网 http://www.qikan.com.cn

小学数学“转化思想”在教学中的应用

作者:谢玉生

来源:《速读·上旬》2016年第11期

小学是学生学习数学的启蒙阶段,这一阶段让学生真正理解并掌握一些基本的数学思想便显得尤为重要。转化思想是数学思想的重要组成部分。它是从未知领域通过数学元素之间的因果联系向已知领域延伸,从中找出它们之间的本质联系,解决问题的一种思想方法。在小学数学教学中,转化思想应用得十分广泛。转化思想架起了新旧知识之间的桥梁。 一、整体把握,注意挖掘教材中所蕴涵的转化思想

数学知识中概念、法则、公式、性质等都是明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中,关键的是教师如何去发现、发掘教材中蕴含的转化思想。为此,我们有必要对此进行系统的梳理,在理清知识网络的同时系统了解数学思想方法在小学各阶段、各章节中的分布,例如小学数学的教学内容中,加法与减法的转化、乘法与除法的转化;分数与小数的转化;除法、分数与比的转化;二维空间(平面图形)之间的转化、三维空间(立体图形)之间的转化、二维与三维空间之间的转化;数与形的转化等等。这样才能结合双基的教学,有意识地向学生渗透、逐步培养他们初步地掌握相关的转化的思想和方法。如《平行四边形的面积》的教学可以设计如下相关的教学目标:引导学生经历平行四边形面积计算的探究过程,初步理解化归思想、掌握方法,渗透“变与不变”的函数思想;培养学生的分析、综合、抽象、概括和解决实际问题的能力,发展学生的空间观念。

二、探索途径,在教学中灵活应用转化思想

教学实践经验证明,要在教学中灵活运用转化思想,融会贯通、举一反三,其关键在于教师在平时的教学中应根据教学内容和学生的认知特点,探求相应的途径和方法,科学地归纳整理,不断加以完善。如何运用转化思想进行教学,笔者做了如下的归纳:

1.特殊与一般的转化。任何客观事物都具有特殊和一般两方面的属性。特殊性既寓于一般性之中,又从某些方面反映着一般性。运用转化思想,既可以实现一般向特殊转化,使需求解的具有一般性的问题转化为特殊形式来解决;也可以运用特殊向一般的转化,通过解决一般性问题而使得特殊问题得到解决。如,低年级数学中关于数的性质、简单四则运算法则等规律性知识的教学,常常运用不完全归纳法把问题转化为特殊的、个别的应用题或图形、算式研究,通过观察、计算、分析、比较,然后归纳出具有一般性的结论。而关于图形认识的教学,一般都是通过对具体的、个别的图形的分析和研究而归纳出图形的共同本质属性。

2.整体与局部的转化。整体与局部的转化是转化思想常见的形式之一。运用分解与组合的方法,可以将较复杂的数学问题分解为几个较简单的问题来求解,这些解的组合便是原问题的

龙源期刊网 http://www.qikan.com.cn

解;也可以将原问题的局部或某些因数适当变换,转化为新问题来求解。这两种变换的目的都是用分解实现转化的。有时把待求解的数学问题与其他问题结合在一起作综合研究,或通过范围更广泛的问题的求解,以实现原问题的解决。这样的变换就是运用组合实现转化。分解与组合都是使所研究问题的关系或结构发生变换,以创设实现转化的条件。

3.高级与低级的转化。人的认识总是从简单到复杂、从低级向高级发展的。解决数学问题可以运用高级向低级转化的方法,化繁为简,化难为易。解方程所运用的消元、降次以及解决空间问题的降维等方法,都是高级向低级转化的方法。低年级数学教学中也广泛运用了这种转化形式,使问题得到简化。如,“乘法口诀”的教学,要根据乘法的意义,把乘法转化为相同加数求和,从而编出口诀。如三的口诀:3×1=3一三得三;3+3=6,3×2=6二三得六;3+3+3=9,3×3=9三三得九。

4.抽象与直观的转化。抽象性是数学最主要的特征之一,数学问题都具有不同程度的抽象性。采用直观手段使抽象问题直观、形象化,这降低了抽象程度,有利于问题的解决;对研究的原型问题,舍弃具体的内容,抽出与数量关系、空间形式有关的纯数学的属性,这样的转化既能实现抽象问题直观化,也能实现直观问题抽象化。

以上所述,只是转化思想中几种常见的形式,在教学中,我们要灵活、客观、科学地加以运用,同时要把握住这条主线:转化思想的方向应该是化隐为显、化繁为简、化难为易和化未知为已知。

三、丰富体验,引导学生自觉应用转化思想

通过平时的教学渗透,可以说学生对转化思想有了一定的认识,但他们的认识是比较肤浅。因此教师还要引导学生在解决问题的过程中中进一步体会到应用转化思想学习数学的优势,才能使学生深入地理解转化思想,并且有意识、自觉的加以应用,在其头脑中得以生根开花。

首先,在相关的知识教学中,如平行四边形转化成长方形,除数是小数的除法转化成除数是整数的除法,异分母分数加减法转化成同分母分数加减法等等,在探究获取新知最终得出结论时,我们要引导学生关注这些图形、算式的变换过程,即“旧知与新知之间什么变了,什么不变?相关要素是如何转化的?”这才是更重要的。如平行四边形转化成长方形,一定要引导学生深入比较:什么变了?什么没变?转化成的长方形的长与宽和原来平行四边形的底与高有什么关系?平行四边形的面积计算方法和长方形的面积计算方法存在什么共同的特征?这样通过学生自己语言的表述让其深刻了解转化的意图,领略转化的数学思想。

其次,在知识的巩固、应用阶段,我们可精心设计一些练习题,让学生在解决问题的过程中体会转化思想,掌握转化思想的方法。

龙源期刊网 http://www.qikan.com.cn

如教学“求一个数的几倍是多少”的问题后,为了让学生理解掌握新知识,并加深体会、运用转化思想。我及时设计这样一道题:①2的4倍是多少?②6的8倍是多少?③4的1倍是多少?④9米的5倍是多少米?⑤3元的7倍是多少元?先请学生说说这些都是我们刚刚学到的“求一个数的几倍是多少”的知识。再引导学生回顾刚才是如何学习新知识,解决数学问题的。进一步使学生明确:要求“一个数的几倍是多少?”时,可以转化为已有的知识“求几个相同加数的和是多少,用乘法”即可。使学生进一步认识体会转化思想。最后启发引导学生用刚学的思想方法,解决上面五道题,增强学生运用转化思想的意识,培养自觉灵活运用转化思想的好品质。学生的回答如下:①2的4倍是(8),想:4个2是多少?2×4=8;②6的8倍是(48),想:8个6是多少?6×8=48;③4的1倍是(4),想:1个4是多少?4×1=4;④9米的5倍是(45米),想:5个9米是多少?⑤3元的7倍是(21元),想:7个3元是多少? 在平时教学中,我们要努力挖掘数学知识中所蕴涵的转化思想及其它数学思想,把握运用数学思想解决问题的机会,增强学生主动运用数学思想的意识,以此提高学生的数学能力,提升学生的数学素养,促进学生的全面发展,为学生的可持续发展奠定基础。

因篇幅问题不能全部显示,请点此查看更多更全内容