首页 养生问答 疾病百科 养生资讯 女性养生 男性养生
您的当前位置:首页正文

全等三角形专题之垂直模型

2022-12-02 来源:华佗健康网
垂直模型

考点一:利用垂直证明角相等

1.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作

BD⊥BC交CF的延长线于D.求证:(1)AE=CD;(2)若AC=12cm,求BD的长.

2.如图(1),已知△ABC中,∠BAC=900,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E.

图(1)图(2)图(3)

(1)试说明:BD=DE+CE.

(2)若直线AE绕A点旋转到图(2)位置时(BD(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE、CE的关系如何写出结论,可不说明理由.

3.直线CD经过BCA的顶点C,CA=CB.E、F分别是直线CD上两点,且

BECCFA.

(1)若直线CD经过BCA的内部,且E、F在射线CD上,请解决下面两个问题: ①如图1,若BCA90,90,则EFBEAF(填“”,“”或“”号); ②如图2,若0BCA180,若使①中的结论仍然成立,则与BCA应满足的关系是;

(2)如图3,若直线CD经过BCA的外部,BCA,请探究EF、与BE、AF三条线段的数量关系,并给予证明.

考点2:利用角相等证明垂B B F E D C F D E A B E C F A D C 图1

A 图2 图3

1. 已知BE,CF是△ABC的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系.

2.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF. (1)求证:CD=BF; (2)求证:AD⊥CF;

(3)连接AF,试判断△ACF的形状.

ACDGEFB变式:如图所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE. 3.如图1,已知△ADC和△EDG都是等腰直角三角形上,连接AE,GC. (1)试猜想AE与GC有怎样的位置关系,并证明你的结论;

(2)将△EDG绕点D按顺时针方向旋转30°,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.

4.如图1,ABC的边BC在直线l上,ACBC,且ACBC,EFP的边FP也在直线l上,边EF与边AC重合,且EFFP

(1) 在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的 数量关系和位置关系;

(2) 将EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接

AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想; (3)将EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长 线于点Q,连结AP,BQ,你认为(2)中所猜想的BQ与AP的数量关系和位置关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.

图1图2图3

因篇幅问题不能全部显示,请点此查看更多更全内容